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A NEW APPROACH FOR LINEAR STABILITY ANALYSIS 
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ABSTRACT 
This paper investigates the issue of linear stability analysis for two and three level explicit and implicit 
one-dimensional finite different numerical schemes. A new approach which is based on the von Neumann 
method is presented. This approach was validated by testing some popular numerical schemes. 
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INTRODUCTION 

As is well known, a numerical method is useless if the method will not converge to the differential 
equation. To prove convergence for nonlinear systems of equations is currently impossible for 
most cases. For the simpler case of a scalar equation, particularly the linear scalar equation, the 
analysis is possible. Although linear convergence is not a sufficient condition for guaranteeing 
nonlinear convergence, it is still a necessary condition to achieve nonlinear convergence. To 
prove convergence, there is a fundamental Lax equivalence theory1 for linear finite difference 
methods, which declares that for a consistent linear method stability is necessary and sufficient 
for convergence. Here linear convergence is obtained by two sequential conditions: one, the 
numerical method has to be consistent with the PDE simulated; two, the numerical method has 
to be stable for, at least, smooth intitial data. The numerical methods concerned in the paper 
are consistent methods. Therefore, all that is left to prove convergence is proving that these 
methods are linearly stable. 

At present, there are several techniques available to analyse linear stability. This includes the 
discrete perturbation method, the Hirt method, the matrix method and the von Neumann 
method2,3,4. Details of these methods can also be found in Reference 5. Comparing with other 
techniques the von Neumann method is the most widely applied technique. However, it is by 
no means an easy task, using these methods, to analyse linear stability even for one-dimensional, 
constant coefficient, initial value problems. For a numerical scheme generated from a complex 
high-order PDE or for a numerical method which has more than second-order accuracy, the 
linear stability analysis can be extremely complicated when applying these techniques. Normally, 
quite tedious and complicated algebraic functions or matrices will be encountered, which are 
either very difficult to analyse or even impossible to manipulate. Often, numerical schemes cannot 
be applied because of lack of stability information. Obviously, a simple and reliable method for 
proving linear stability is desired. 

In this paper we investigate this issue and develop an approach to the linear stability analysis 
in a simple manner. 
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LINEAR STABILITY ANALYSIS 
In this section we restrict our study to the initial value problem (IVP) for the simplest case of 
one dimensional scalar linear PDEs with the smooth initial data. 

We discretise the computational half plane by choosing a uniform mesh with a cell width 
h = ∆x, a time step k = ∆t and define the computational grid xj= jh, tn= nk. We use Un

j to denote 
the computed approximation to the exact solution u(xj,tn) of the PDEs. 

A new approach for linear stability analysis 
For one dimensional linear finite difference numerical methods with smooth initial data, 

if the amplification coefficient |λ(θ)| of the scheme is a monotone (increases or decreases) function, 
i.e. ≥ 0 (or ≤ 0), with respect to θ in the interval [0,π], then the linear stability conditions 
of the scheme can be determined from, 

For pure odd grid point or pure even grid point finite difference numerical schemes if the 
amplification coefficient is a concave or convex function, i.e. |λ(θ)|" ≥ 0 (or ≤ 0), in the interval 
[0, π], then an additional stability condition of the scheme is required, 

here, 

where kn are the integer grid point numbers at time level n; Bn
kn are constant coefficients; λ(θ) is 

the amplification factor of the numerical scheme; is the conjugate of the λ(θ). To achieve 
stability, 

If the amplification coefficient does not satisfy the conditions above, then the stability conditions 
can be defined by investigation of those phase angles at which the amplification coefficient has 
extreme values. 

Proof 
The von Neumann method (Fourier Series method) is based on assuming that, 
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where An
L is the amplitude at time level n; L is the wave number in x-direction, L = 2π/τ, τ is 

the wavelength; i is the complex number, i= 
Considering the general form of linear numerical methods of (1), from (7) we have, 

Substituting (8) into (1), 

Dividing both sides of (9) by An
L eiLj∆x and reorganizing it, we get the amplification factor at the 

new time level, 

Here θ is the phase angle, θ = L ∆x; 

where, 

For a linear numerical method with smooth initial data, since the Courant number is constant, 
therefore the amplification factors at different time levels are identical, i.e. λn = λn-1 . From now 
on we write A instead for simplicity. 

The absolute value of the amplification factor |λ| is called amplifier coefficient. Obviously if 
|λ| > 1, the numerical method will not be stable, otherwise, it is stable. Therefore, for stability, 

for all phase angles ranging from θ = 0 to θ = π. 
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This is the normal approach of analysing the stability in practice using the Fourier method. 
But, generally, (13) is very complicated algebrically, especially for high order numerical methods, 
say, over second order. For a method over second order, |λ| is very difficult to work out, or 
even impossible to manipulate. Here, we are going to adopt a new approach. 

The difficulty of analysing (13) lies in the phase angle θ which covers the whole domain from 
0 to π associated with all wave numbers. The question here is that as far as the stability of a 
numerical scheme is concerned, is it necessary to analyse the whole range of the phase angles? 
If not, which phase angle do we need to analyse? The instability of a numerical method is caused 
by the unbounded fast accumulated amplitude error with the time evolution. To limit the 
amplitude error we need first to find out at which phase angles the amplification coefficient have 
the extreme values in the interval [0,π] (we called the angles which represent all turning point 
angles and boundary point angles extreme value angles), and then it is sufficient to restrict these 
values to less than or equal to 1 at these phase angles. In order to find the angles at which the 
|λ| has extreme values, first we need the first derivative of |λ| with respect to θ, i.e. |λ|', then by 
setting |λ|' equals to zero the extreme value angles can be defined. 

From (13) we have, 

Equation (14) is equivalent to 

or 

Here, 

therefore, 

For 3-level explicit schemes (18) reduced to, 
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For 2-level explicit schemes (18) is further reduced to, 

By solving equation (15) the obvious Courant number-independent extreme value angles can be 
easily defined. They are 

since when θ = 0, π, a2, b2, and c2 equal to zeros, therefore (y2
r+y2

r)' = 0; when θ = π/2 a1, b1, c1 
are zeros odd k and a2, b2, c2 are zeros even k, resulting in (γ2

r + γ2
i)' = 0. 

Equation (23) means that for pure odd or even number grid point schemes the amplification 
coefficient |λ| has a extreme value at phase angle θ = π/2. For example, the Lax-Friedrichs scheme 
which is a odd number point scheme has a extreme value angle at the angle Θ = Π/2. 

There may be other Courant number-dependent extreme value angles between θ = 0 and θ = π 
depending on the solution of (15). However, there is one important category of schemes for 
which the amplification coefficient is a monotone function, that means (λ(θ) ≥ 0 (or ≤ 0) 
V [0, π]. In this case, the extreme value angles must be either at θ = 0 or at Θ = Π, in which cases 
the linear stability analysis becomes very simple. Actually, as we will see later, large number of 
useful finite difference numerical schemes fall into this category. 

For pure odd or even grid point schemes if |λ(θ)|" ≥ 0 (or ≤ 0) V [0, π], i.e. the function curve 
of the amplification coefficient is either concave or convex, then the extreme value angle may 
appear at θ=π/2. Hence we have the following criterion: 

Criterion For finite different numerical schemes with smooth initial data it is necessary and 
sufficient to investigate the linear stability at phase angles at which |λ(θ)| has extreme values in 
the interval [0, π]. 

If ≥ 0 (or ≤ 0) in the interval [0, π], it is necessary and sufficient to investigate the 
linear stability at the phase angle θ = 0 and θ = π. 

For pure odd or even grid point finite difference schemes if |λ(θ)|" ≥ 0 (or ≤ 0), it is necessary 
and sufficient to investigate the linear stability at phase angle θ = 0, θ= π and θ = π/2. 

Based on this criterion substituting θ = 0, π and θ = π/2 into (10) we establish the new approach 
introduced at the beginning of the section. 

Equations (2) and (3) are the general form of amplification function which is valid for two 
and three times levels, explicit and implicit numerical schemes. For convenience here we give 
some specific schemes as follows. 

3-level explicit schemes 
If we consider 3-level explicit schemes 

then (2) and (3) become, 
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2-level explicit schemes 
If we consider 2-level explicit schemes, 

then, (2) is further simplified to, 

since ∑k
n Bn

kn = 1 for consistency. 

2-level implicit schemes 
For 2-level implicit schemes, 

the amplification factor of equation (2) becomes, 

2-level fully implicit schemes 
For fully implicit schemes, 

The amplification factor has the following simple form, 

since ∑kn+1 Bn +1
kn+1 = 1 for consistency. 

Procedures of the new approach 
The procedures of linear stability analysis using the new approach can be outlined as follows: 
1. calculate the extreme value angles θ(c) using (15) with (18)-(20) 
2. check whether or not the extreme value angles θ(c) function conform to the monotone 

function requirements 
3. if satisfy the requirements then the stability conditions can be defined applying (24)-(32) 

(according to the scheme used) 
4. if not. using (13) with (17), analyse stability conditions only at the extreme value angles 

θ(c) defined at stage one. 

EXAMPLES OF STABILITY ANALYSIS 
In this section we use some numerical schemes some of which the stability conditions are well 
known to illustrate the procedures and test the stability approach. 

Example I. Modified Lax-Wendroff scheme 
Consider the scheme, 

here, c is the Courant number, c = a∆t/∆x, a is the wave spped, d is a variable. 
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From (20) we have, 

Two special cases are easily defined from (34): when d = c2 and d = |c| the amplification coefficient 
is monotone, since in these cases (34) keeps the same sign in the interval [0, π]. In the former 
case (33) becomes the second-order Lax-Wendroff scheme. From (28) the amplification factor is, 

Therefore the stability condition is, 

This is identical to the familiar result. If the latter case (33) reduces to the first-order upwind 
scheme. The scheme is stable for |c| ≤ 1. 

For d being other values the |λ| is not always a monotone function. Its behaviour is determined 
by Courant number and d. In this case we need to find out the extreme value angle function 
θ(c) by setting (34) equal to 0, which gives, 

Bringing (37) into (13) we have, 

For stability |λ| ≤ 1. 

Example 2. Leapfrog scheme 
The leapfrog scheme for the scalar advection equation has the following form, 

This is a 3-level explicit scheme. It is easy to prove that the scheme has extreme values at θ = 0, 
π, and Π/2. Using (25) we have, 

That is, 

From (26) we have 

From (4), 

Equation (41) and (42) mean |λ| = 1; (43) means |λ| ≤ 1 for |c| ≥ 0. Actually this scheme is neutrally 
stable for |c| ≤ 1. 

Example 3. Crank-Nicolson scheme 
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This is a 2-level implitic scheme. The scheme has a monotone amplification coefficient function. 
From (30), 

i.e. |λ| = 1. This scheme is unconditionally stable. 

Example 4. Lax-Friedrichs scheme 

This is a 2-level explicit odd point scheme. The scheme has a concave amplification coefficient 
function, therefore we need to check both (28) and (4). From (28), 

From (4), 

Therefore, this scheme is stable if |c| ≤ l. 

Example 5. Fully discrete fourth-order scheme (see Reference 6) 

This is a 2-level explicit fully discrete fourth-order both in space and time scheme. The scheme 
has a monotone amplification coefficient. From (28) the amplification factor is, 

which is plotted in Figure 1. The stability conditions of the scheme are, 

Example 6. Explicit space-centred scheme for the model diffusion equation ut=vuxx 

here, the d is the diffusion number, d = v ∆t/(∆x)2; v is the viscous coefficient. 
It has been proved that the scheme has a monotone amplification coefficient function. From 

(28) the amplification factor, 
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The stable condition is, 

Example 7. Fully implicit scheme for the model diffusion equation 
Again the scheme has a monotone function 

From (32), 
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Since d is positive the scheme is unconditionally stable for d > 0. We get the same conclusion 
as that proved by using other techniques. 

Example 8. Fully discrete seven point scheme for the model diffusion equation (see Reference 7) 

This is a fully discrete explicit scheme which has sixth-order accuracy in space and third-order 
in time. From (28) we have, 

For |λ|, 1, see Figure 2, the stability condition is, 

CONCLUSIONS 
In this paper we presented a linear stability analysis method for one dimensional numerical 
schemes. To illustrate the method linear stability of a variety of numerical schemes is analysed. 
This approach offers us a simple means to deal with linear stability study for 1-D finite difference 
schemes. 
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